THE SYNTHESIS OF 5H-CYCLOHEPT[a] AZULEN-5-ONE AND ITS NOVEL REACTION WITH A SULFUR YLIDE: THE FORMATION OF A NEW HETEROCYCLIC SYSTEM1)

Masafumi YASUNAMI, * Atsushi TAKAGI, and Kahei TAKASE Department of Chemistry, Faculty of Science, Tohoku University Aramaki-aza-Aoba, Sendai 980

5H-Cyclohept[a]azulen-5-one and its ll-methoxycarbonyl derivative were synthesized. The latter reacted in a novel manner with a sulfur ylide to give a new heterocyclic compound having 5-oxa-5H-dicyclohepta[cd,hi]indene skeleton.

As a new type of nonbenzenoid aromatic compound, cyclohept[a]azulenes and related compounds have been interest in their properties and reactivities based on the tricyclic C_{2v} symmetric carbon skeleton of 7,5,7-ring system. 2) authors have synthesized cyclohept[a]azulenylium ion³⁾ which is the most basic compound of this new system, by employing 1,2-pentamethylenazulene. 4) six possible isomers of cyclohept[a]azulenone (azulenotropone), only 3H-cyclohept-[a]azulen-3-one has been synthesized. 5) In this communication, we would like to describe the synthesis of 5H-cyclohept[a]azulen-5-one (1) and its 11-methoxycarbonyl derivative (2) and a novel reaction of 2 with sulfur ylide resulting in the formation of a new heterocyclic system having 5-oxa-5H-dicyclohepta[cd,hi]indene skeleton.

The syntheses of 1 and 2 were carried out by the application of the Jones' tropone synthesis 6) to a carbonyl compound (3) 7) as follows. Thus, the bromination of 3 with 3 molar equivalents of phenyltrimethylammonium perbromide (PTAB)

in anhydrous tetrahydrofuran at 0°C gave a dibromo compound (4) [red prisms, mp 121-123°C]⁸⁾⁹⁾ in 95% yield. The dehydrobromination of $\underline{\mathbf{4}}$ by treatment with 6 equivalents of lithium chloride in dimethylformamide at 110°C under a nitrogen atmosphere gave 2 [dark brown needles, mp 140-141°C] in 91% yield. methoxycarbonylation of 2 by heating it with 100% phosphoric acid at 95°C yielded $\underline{1}$ [green scales, mp 100-101.5°C] $^{11)}$ in 97% yield. On the 1 H-NMR spectra of $\underline{1}$ and $\underline{2}$ in CDCl₃, the signal of H-6 was chracteristically observed at low field, 10.35

and 10.66 ppm, respectively, by the anisotropy effect of the carbonyl group at 5-position.

The 5H-cyclohept[a]azulen-5-ones $(\underline{1},\underline{2})$ were protonated at the carbonyl oxygen to form cyclohept[a]azulenylium ions $(\underline{1a},\underline{2a})$ in $\text{CF}_3\text{CO}_2\text{H}$. Further, the parent compound, $\underline{1}$, was protonated both at the carbonyl oxygen and ll-position in FSO $_3\text{H}$ to form a dication (lb). These structures were confirmed by UV and $^1\text{H-NMR}$ spectra.

It is well known that tropone $^{12)}$ and benzo[d]tropone $^{13)}$ react with sulfur ylides to give 2,3-homotropone derivatives. On the bases of these previous findings, the reaction of $\underline{2}$ with ethyl dimethylsulfurnylidene acetate (EDSA) $^{14)}$ was tried in expectation of the formation of 3,4-homo derivative ($\underline{5}$). However, the homo compound ($\underline{5}$) was not formed but an unexpected novel product having a new heterocyclic ring system was formed as a sole product in good yield as follows.

The reaction of $\underline{2}$ with 1.4 equivalents of EDSA in anhydrous tetrahydrofuran at 0°C afforded a crystalline product ($\underline{6}$) [reddish violet needles, mp 141-142°C]¹⁵⁾ in 98% yield. The IR spectrum of $\underline{6}$ reveals an additional intense band of an ester carbonyl at 1753 cm⁻¹ besides the band of the ester group at 11-position (1667 cm⁻¹). The 1 H-NMR spectrum of $\underline{6}$ exhibits no signals which are able to assign to the proton on a cyclopropane ring. The reaction of a deuterated 5H-cyclohept[a]-azulen-5-one ($\underline{2d}$) with EDSA under the same conditions gave $\underline{6d}$ in 77.8% yield. On the bases of these facts as well as the results on elemental analyses and other spectral data, a new heterocyclic structure, 6-ethoxycarbonyl-11-methoxycarbonyl-6,6a-dihydro-5-oxa-dicyclohepta[cd,hi]indene, was assigned to $\underline{6}$.

The hydride abstraction of $\underline{6}$ with trityl tetrafluoroborate in dichloromethane gave a cation $(\underline{7a})$ [reddish brown cryst., mp over $300^{\circ}\text{C}]^{17}$) in 99% yield. Treatment of $\underline{7a}$ in chlorofrom with sodium hydrogen carbonate solution afforded a new heterocyclic compound, 5-oxa-5H-dicyclohepta[cd,hi]indene derivative ($\underline{8}$) [brown prisms, mp $143.5-144^{\circ}\text{C}]^{18}$) in 23.7% yield. The compound, $\underline{8}$, was also obtained from $\underline{6}$ by treatment with DDQ followed by neutralization of the resulting cation with sodium hydrogen carbonate in overall 65.3% yield. On the $^1\text{H-NMR}$ spectrum, the all ring protons of $\underline{8}$ were shifted to higher field in comparison with that of $\underline{2}$. The formation of a cation, $\underline{7b}$, by the protonation of $\underline{8}$ in CF $_3\text{CO}_3\text{H}$ was confirmed by $^1\text{H-NMR}$ spectrum.

A probable pathway for the formation of the novel product, $\underline{6}$, is depicted as shown in the Scheme by considering high nucleophilicity of the carbonyl oxygen of $\underline{2}$ and access of the carbonyl oxygen to C-6 position. The positively charged sulfur of the ylide interacts with the carbonyl oxygen to form a cyclohept[a]-azulenylium ion intermediate (\underline{A}). Then it undergoes a ring closure to form another intermediate (B) followed by elimination of dimethylsulfide from \underline{B} to give $\underline{6}$.

The reaction of $\underline{2}$ with dimethyloxosulfonium methylide and the reactions of $\underline{1}$ with both sulfur ylides gave no identified products, respectively.

References and Notes

- Part II of the series of synthetic studies on cyclohept[a]azulene and related compounds, Part I: see ref. 3.
- 2) R. Fleisher, K. Hafner, J. Wildgruber, P. Hochmann, and T. Zahradnik, Tetrahedron, 24, 5947 (1968).
- 3) M. Yasunami, T. Amemiya, and K. Takase, Tetrahedron Lett., in press.
- 4) P. W. Yang, M. Yasunami, and K. Takase, ibid., <u>1971</u>, 4275.
- 5) M. Saito, T. Morita, and K. Takase, Chem. Lett., 1974, 955.
- 6) E. W. Collington and G. Jones, J. Chem. Soc. (C), 1969, 2656.
- 7) T. Amemiya, M. Yasunami, and K. Takase, Chem. Lett., 1977, 587.
- 8) All new compounds gave satisfactory results on elemental analyses and spectral data in accord with the assigned structures.
- 9) IR(KBr): $v_{C=0}$ 1695, 1653 cm⁻¹; ¹H-NMR(CDCl₃, 60 MHz), δ ppm: 1.87-2.37(2H, m, H-2), 2.92-3.15(2H, m, H-1), 3.26(2H, t, J=6.5 Hz, H-3).
- 10) UV(MeOH): λ_{max} 237 nm(log ϵ 4.46), 268(4.58), 285(4.35), 320(4.26), 335(4.40), 352.5(4.47), 370(4.27), 395(4.13), 440(3.61), 535(2.82), 600(2.55); λ_{max} in CF₃CO₂H: 263.3(4.37), 282.5(4.18), 332(4.67), 356(4.33), 400(2.89), 441(3.58),

- 467(4.04), 504(3.36), 542(3.15), 590(2.78); IR(KBr): 1698, 1680, 1580, 1570, 1555, 1522, 1480, 1430, 1415, 1378, 1310, 1288, 1230, 1180, 1160, 1160, 1070, 1048, 1000, 885, 836, 807, 730, 645 cm⁻¹; 1 H-NMR(CDCl $_{3}$, 100 MHz), $^{\delta}$ ppm, J in Hz: 4.03(s, OMe), 6.84-7.22(3H, m, H-2,3,4), 7.52-8.04(3H, m, H-7,8,9), 8.48-8.72(m, H-1), 9.44(dm, J=10.5, H-10), 10.66(dm, J=9.5, H-6); 1 H-NMR(CF $_{3}$ CO $_{2}$ H, 100 MHz): 4.41(s, OMe), 7.95-8.82(6H, m, H-2,3,4,7,8,9), 9.64-10.22(2H, m, H-1,10), 10.94(dm, J=9.0, H-6).
- 11) UV (MeOH): λ_{max} 229 nm(log ϵ 4.49), 251.5(4.36), 280(4.23), 288(4.28), 325 (4.45), 338.5(4.59), 355(4.51), 376(4.23), 408(3.68), 440(3.59), 450(3.44), 523(2.81), 558(2.99), 600(3.04), 652(2.78); λ_{max} in CF₃CO₂H: 284(4.10), 323 (4.60), 335(4.82), 360(4.20), 457(3.76), 487(4.34), 513(3.45), 560(3.25), 612 (3.06), 675(2.55); λ_{max} in FSO₃H: 345(3.95), 360(4.14), 375(4.18); IR(KBr): 1578, 1561, 1552, 1490, 1445, 1420, 1405, 1395, 1280, 1225, 1052, 813, 738, 540 cm⁻¹; $\frac{1}{1}$ H-NMR(CDCl₃, 100 MHz), δ ppm, J in Hz: 6.45-7.18(3H, m, H-2,3,4), 7.18-7.85(4H, m, H-1,7,8,9), 7.35(s, H-11), 8.36(dm, J=10.0, H-10), 10.35(dm, J=9.5, H-6); $\frac{1}{1}$ H-NMR(CF₃CO₂H, 100 MHz), δ ppm, J in Hz: 7.72-8.58(6H, m, H-2,3,4,7,8,9), 8.09(s, H-11), 8.08(dm, J=10.0, H-1), 9.03(dm, J=10.5, H-10), 10.58 (dm, J=10.0, H-6); $\frac{1}{1}$ H-NMR(FSO₃H, 60 MHz), δ ppm: 5.27(2H, broad s, H-11), 8.10-8.95(9H, m, H-1,2,3,4,6,7,8,9,10).
- 12) Y. Sugimura and N. Soma, Tetrahedron Lett., 1971, 1721.
- 13) Y. Sugimura, N. Soma, and Y. Kishida, ibid., <u>1971</u>, 91.
- 14) G. B. Payne, J. Org. Chem., 32, 3351 (1967); M. Fieser, L. Fieser, "Reagents for Organic Synthesis" Vol 2, p-196, Wiley-Interscience, New York, 1969.
- 15) UV (MeOH): λ_{max} 226 nm(log ϵ 4.36), 239(4.39), 278(4.22), 292(4.22), 330(4.41), 366(3.85), 403(3.69), 550(3.03); IR(KBr): 1753, 1677, 1578, 1450, 1390, 1210, 1180, 1160, 1130, 1042, 983, 850, 790, 713, 622 cm⁻¹; 1 H-NMR(CDCl $_{3}$, 100 MHz), δ ppm, J in Hz: 1.26(t, J=7.0, CH $_{3}$ CH $_{2}$ O), 3.95(ddd, J=5.5, 3.3, 2.2, H-6a), 3.96(s, OMe), 4.20(q, J=7.0, CH $_{3}$ CH $_{2}$ O), 5.22(d, J=5.5, H-6), 5.65(dd, J=10.3, 3.3, H-7), 6.11(ddd, J=10.3, 6.0, 2.2, H-8), 6.55(dd, J=11.5, 6.0, H-9), 7.11-7.35(2H, m, H-2,4), 7.62(tm, J=10.0, H-3), 7.87(d, J=11.5, H-10), 9.32(dm, J=10.0, H-1); 13 C-NMR(CDCl $_{3}$, 10 MHz), δ ppm: 36.9(d, C-6a), 78.8(d, C-6).
- 16) This compound was synthesized by the same procedures utilizing a deuterated carbonyl compound (3d).
- 17) 1 H-NMR(CD₃CN, 60 MHz), δ ppm, J in Hz: 1.12(t, J=7.0, CH₃CH₂O), 4.12(s, OMe), 4.15(q, J=7.0, CH₃CH₂O), 6.98(s, H-6), 7.85-8.45(6H, m, H-2,3,4,7,8,9), 9.68 (dm, J=10.0, H-1 or 10), 9.95(dm, J=10.0, H-10 or 1).
- 18) UV (MeOH): λ_{max} 220 nm (log ϵ 4.44), 233(4.38), 293(4.71), 325(4.05), 341(4.11), 403(4.14), 470(3.18), 498(2.81), 530(2.33); IR (KBr): 1692, 1683, 1595, 1526, 1462, 1440, 1382, 1330, 1272, 1222, 1214, 1103, 1078, 788, 753 cm⁻¹; 1 H-NMR (CDCl₃, 100 MHz), δ ppm, J in Hz: 1.25(t, J=7.0, CH₃CH₂O), 3.73(s, OMe), 4.07 (q, J=7.0, CH₃CH₂O), 5.01(ddd, J=9.0, 7.5, 1.0, H-8), 5.18(ddd, J=11.0, 7.5, 1.5, H-9), 5.47(d, J=11.5, H-4), 6.78(ddd, J=11.0, 8.5, 0.8, H-2), 6.32(ddd, J=11.5, 8.5, 1.0, H-3), 6.36(dd, J=11.0, 1.0, H-10), 6.60(dm, J=9.0, H-7), 7.80(d, J=11.0, H-1); 1 H-NMR(CF₃CO₂H, 60 MHz), δ ppm, J in Hz: 1.25(t, J=7.0, CH₃CH₂O), 4.32(q, J=7.0, CH₃CH₂O), 4.32(s, OMe), 7.00(s, H-6), 7.97-9.00(6H, m, H-2,3,4,7,8,9), 9.83(dm, J=10.0, H-10), 10.01(dm, J=10.0, H-1).